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1. INTRODUCTION

The performance evaluation of finite element methods has recently drawn

a large attention. The question is strictly related to the development of a

suitable set of benchmark problems upon which to verify and possibly to

compare the accuracV of different finite elements. In here we refer to the

proposed set of problems made by McNeal and Harder [1], the comparison studies

of Robinson and Blackham [2], [3] and, for a comprehensive up-to-date review

of the matter, the proceeding [4].

In this paper we consider the benchmark problem of a simply supported

uniformly loaded rhombic plate. There are important questions related to the

computation of such a problem. For example, which conclusions can be

reasonably drawn from the results and how to interpret the rapid deterioration

of the accuracy as the skewness becomes larger. Moreover, does the

computation of the skew plate illustrate adequately the sensitivity of the

finite elements to the skewness or is there some other more relevant effect to

be considered? We shall show that the effect due to the skewness of the

elements of the decomposition is negligible, the main effect being the

singularity of the solution due to the presence of obtuse corners in the plate

domain.

The design of benchmark problems should be made so as to be really

representative for a well described class of problems and effects. Therefore,

the selected problems need to be known in all their aspects that can influenceI the performance of the finite element solution. For example, it is well known

that a special method or approach can be designed to perform very efficiently

but only for a very narrow class of problems. Therefore attention should be

placed also on the class of problems for which the test is chara~teristic.
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Otherwise conclusion based on benchmark computations could be very

misleading. There are, of course, many other questions. Among them: how to

aesign "academic" benchmark problems isolating single effects which can then

lead to useful conclusions for non-academic environments; how to assess

robustness and reliability of the method; how to estimate the computational

complexity of the method.

Obviously conclusions based or. benchmark computation can never be

completely objective. Nevertheless useful information can be drawn when based

on the state of the art of both theoretical and experience field. The

reliability has to be understood not only with respect to a particular

mathematical model but, in addition, also the model has to be considered. For

example, how accurate is the solution of the Kirchhoff model of a rhombic

plate compared with the solution of three dimensional linear elasticity

problem.

Throughout the paper we will address the above questions, focusing

mainly on which type of conclusions can be inferred from the results of

computation with different finite elements of a simply supported uniformly

loaded rhombic plate. The following aspects will be especially analyzed:

1. Effect of the skewness of the element of the decomposition.

2. Effect of the singularity of the exact solution.

3. How to improve the performance of the finite element solution when

the skew angle of the plate become sr, all.

4. Relation between accuracy and computational complexity for various

finite element methods on a given class of problems.

5. Class of problems the benchmark skew plate is representat;-Te of.



The outline of the paper is the following. In Section 2 we introduce

the nodel problem and characterize, in a suitable mathematical way, the

properties of the exact solution of the problem. Section 3 is devoted to the

description of the finite s'lements used for comutations, together with some

abstract convergence results. In Section 4 we present the numerical

results. First we consider the case of uniform decomposition, then we.

consider an appropriate non-uniform decomposition allowing to considerably

reduce the magnitude of the error. The study of the relation between accuracy

and cost of computation ends Section 4. Finally, in Section 5 the conclusions

are shown.



6

2. THE MODEL PROBLEM

We are interested in the Kirchhoff model for the simply supported plate

with parallelogram shape. Let us denote by 9 the domain of the (xl,x 2 )-
4

plane occupied by the plate, let r = U be its boundary, Ai, i = 1,4,
i=1

its vertices and a = a U r. Let a denote the skew angle of the plate.

Sa i

I /

2:

A4  r, A, X't

pv

Fig. 2.1. The domain of the plate.

We assume the plate loaded by a traisversal load g(x 1 ,x 2 ). We denote

by Hk(g) the standard Sobolev space of the functions with square-integrable

derivatives up to the order k. We will also use the Sobolev spaces with

fractional derivatives defined in the usual way by interpolation techniques

-(e.g. the K-method; see [5] for details). We also mention the Besov spaces

BK Ua) which are very close the the spaces Hk(g), namely
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2.1 Hk(fl) C Bk (9) C Hk-e(Q) C > 02,

(see [5] for more details). Further we denote

2.2 OH2(a) = {u E H2(U8): ulr 01.

The exact solution u0  of our problem can now be defined as the

minimizer of the quadratical functional F(u) over OH2 (g), where

2.3 F(u) = B(u,u) - Q(u),

[(a 2 u +22 2 2 2

2.4r B+~u 1U Di u a U0vK E! 32 dx dx1222 (•2,-B-.u.=-x[(] l 2 2 x 21Q ax 1  ax2 ax1 ax 2

2.5 Q(u) J g(x 1 ,x 2 ) u dxldx2

2.6 
D = Et3

12(1-v 2)

E i3 the Young's modulus, t the thickness of the plate and v the

Poisson's ratio.

The expression B(u,u) has the meaning of the (strain) energy of the

plate,

2.7 YuIH2(a) _ HulE - B(u,u)/2 >_ Y21uI2(aj, 2 > 0,

and has all the properties of a norm. Later we will measure the error

S2.8 e - u0 -U FE

between the exact solution u0 and the finite element solution UFE in the
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(energy) norm defined by 2.7. It is easy to see that this measure is

equivalent to the error in the moments measured in L2 (Q), i.e. in the least

square way over S.

Remark -.1. The formulation 2.3-2.5 has proper meaning for a general domain

It follows easily by 2.3 and 2.7 that the solution u0 exists for any

given load g(x 1 ,x2 ) E HO(2) L2 (2) (i.e. space of the square integrable

functions) and that it is unique.

Remark 2.2. The solution exists for a large class of loads. For example, a

concentrated load (g(xl,x 2 ) = Dirac's function) is allowed due to the

inclusion H2 (g) " C0 (Q).

In the following we will concentrate on the case of loads given by

analytic functions on I. A representative of this class is g(x 1 ,x 2 ) = 1,

i.e. uniformly distributed load. (This example will be considered in the

benchmark problem). In this case the solution u0 is an analytic function
14

on - U Ai, i.e. u0  is not analytic at the vertices A, but is
i=1

analytic at all the rest of the boundary. In the neighborhood of the vertex

Al (and A3 ) the solution has the form

2.9 u0  = crw-a sin W N 8 + smoother terms,

where a (0 < a < w/2) is the angle indicated in Fig. 2.2a. In the

neighborhood of the vertex A4 (and A2 ) we have
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2.10 U0  = cra sin e + smoother terms.

With r,6 we denote the polar coordinates with the origin in A, (resp. A2 )

as shown in Fig. 2.2a,b.

r

Figure 2.2a,b. Polar coordinates around the corners.

The solution u0  has a strongest singular behaviour in. the neighbor-

hoods of the vertices A, and A3 . We see that the singularity becomes

stronger as a ÷ 0 and, for any a, u0  H3(g). In fact, we can show that,

for 1 > a > 0
2

2.11 Uo0 HE -(Q), VS > 0,

2.12 Y = 2 +
it-a

Moreover

2.13 uo f O(Q) but uo E By,(s).

Remark 2.3. The regularity of the exact solution of the problem plays a

crucial role in the performance of the finite element method. In [6] we have
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characterized the smoothness of the solution in the framework of countably

normed spaces and used those results in relation with the analysis of the

performance of the h-p version of the finite element method (see [7,8], [9],

[10]).

Remark 2.4. The singularity of the solution of the simply supported Kirchhoff

plate caused by the corner of the domain leads to some paradoxical properties

of the solution. Consider, for example, the problem of a simply supported

plate with Poisson's ratio v = 0, with the shape of a regular n-sided

polygon inscribed into a circle of radius R, uniformly loaded with a load

q. Let un be the solution. Further, let u. be the solution of the

analogous problem for the circular plate of radius R. The solution un is

defined by 2.3-2.5 and it is uniquely determined for every integer n,n=

3and un uu. as n w, but, and this is the paradox, u, u.c. At

the center C of the plate we have

2.14 u.(O,O) = lim u n (0,O 6 34 1

n-o

2.15 uc(OO) - -64 I'

where I is the momentum of inertia. This means a difference of more than

40%1. The implications of this result (referred to as Babuska paradox) have

been addressed in various papers (see e.g. [11], [12), [13], [14]).



3. THE FINITE ELEMENT APPROXIMATION

We are interested to solve numerically the problem defined by 2.3-2.5

using a finite element approximation. To this end we define the finite

dimensional space S of the finite element solutions and then we minimize the

functional F(u) in 2.3 over the space S. The core of the finite element

method, in its simplest form, is essentially the construction of a suitable

finite element space S. First a triangulation (or other partition) is

established over the set § and then the space S is constructed. The

quality of the finite element solution is determined by the properties of S.

We will consider in the following three different finite elements for

plate bending problems:

a) Argyris element (ARGY)

b) reduced Hsieh-Clough-Tocher element (HCTR)

c) dual hybrid element (HYBR).

It is well known that a quite large number of elements for plate is described

in the scientific literature and many of them are implemented in the finite

element codes. A rough but effective classification can be made dividing the

elements in two categories: conforming and non-conforming, depending on

whether or not S c OH2 (U). We have restricted curselves to the above

mentioned elements, all of them conforming, although similar analysis as we

present could be carried out for other elements as well.

Let us briefly describe the finite elements we have used, together with

their basic properties.

MAN
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The Argyris element

The conformi ;y of a plate element can be obtained in different ways. In

the Argyris element the C1 -condition (i.e. continuity of the functions of S

and of their first derivatives), which implies S c OH2 (0) is satisfied

through the use of a complete space of degree 5 (see [15], [16]). This

corresponds to 21 degrees of freedom per triangle, as shown in Fig. 3.1. In

particular the value of the displacement, together with its first and second

derivatives, is imposed at the vertices, the normal derivative is prescribed

at the midpoint of each side. We recall that the number of d.o.f. is very

close of the optimal one (18, see [17]) neeced to insure the conformity when

(only) a polynomial space is used.

a, 2

Fig. 3.1. The Argyris element (ARGY).

The reduced Hsieh-Clough-Tocher element

The original Hsieh-Clough-Tocher element is a composite one: the basic

element is subdivided into three triangles and then on each subtriangle a

complete cubic polynomial is defined. After imposing the C 1-continuity at

the vertices and across the sides of the subtriangles only 12 of the initial
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30 d.o.f. remain: displacement and its first derivatives at the vertices,

normal derivative at the midpoint of each side. The reduced element (see Fig.

3.2) is obtained eliminating the degrees of freedom normal derivatives. This

correspond to require the cubic polynomials on each subtriangle to have linear

normal derivatives on the sides. The dimension of the space associated to the

element, 9, is optimal in the sense that this is the lower possible number

of d.o.f. required for a conforming element. We mention that this element is

used in several commercial codes. For more details we refer to [18], [19],

[20].

Fig. 3.2. The reduced Hsieh-Clough-Tocher element (HCTR).

The dual hybrid element

The basic idea for the so-called hybrid finite elements was first

suggested by Pian and Tong [21). We refer to £22] for a clear exposition of

the features of this approach for solving linear solid mechanics problems.

The element we have used has been extensively analyzed, both from theoretical

and numerical standpoint, by Brezzi and Marini (see [23), [24I), [25]). The

main aspect of the finite element is the particular choice of the displacement

approximation space, formed by cubic polynomials only defined at the boundary

.4
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of the triangle. Obviously, the functions are in some way extended to the

whole triangle, but the computations requires only the values at the

interelement boundaries The degrees of freedom are shown in Fig. 3.3 and

consists of values of displacement and its fiiest derivatives at the

vertices. The dimension of the approximation space is 9.

a2

Fig. 3.3. The dual hybrid element (HYBR).

Let us now recall the approximation properties of the elements we have:

THEOREM 3.1. Let the triangulation of 5 be quasi-uniform(satisfying the

minimal angle condition), the solution u0 E Hk(a) nl OH2(), k > 2 (integer

or fractional). Thenthe following estimate holds:

3.1 luo - uIE Ch lUo IHk( )

with

3.2 min(k-2,4) for ARGY

3.3 = rin(k-2,1) for HCTR, HYBR,

where h is the maximum size of the elements of the decomposition, C ib a



_ -5

.constant depending on the aspect ra';io, the skewness of the elements and the

type of the finite element.

Theorem 3.1 is related to the standard h-version of the finite element

method. As the number K of degrees of freedom is (asymptotically) of

order h-2 we can re-writp relation 3.1 in the form

3.14 IuO- UFIE S< CN luolH K(.

Theorem 3.1 is formulated in a general way. For the problem of uniformly

loaded simply supported skew plate we can state the following:

THEOREM 3.2. Let the tPiangulation of i be quasi-uniform (satisfying the

minimal angle condition) and th. load be uniform on R. Then there exl.-t two

constant C1  and C2  such that the following estimate holds:

3.5 C1N < Iuo-uFE0 E <_ FI C?,-M

where the constants C1  aid C2 depend on the aspect ration, the skewness of

the elements, the finite element itself (ARGY, HCTR or HYBR), but are

independent of N (i.e. the rate of corvergence is the same for all three

elements).

Theorem 3.2 shows that the rate of convergence, and therefore the

accuracy, deteriorates while the skew angle a decreases. This behaviour is

almost independent of aspect ratio and skewness of the elements as these

influence only the constants C1  and C2 . The theorem holds not only for our

choice6 of elements but it is more general, the only exception being the case

when special elements with the shape functions of the form 2.9 are used (this
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is, for example, the reason of the performance of the element ELFIN in the

iomparative study made by Robinson [26]).

Theorem 3.2 has only asymptotic character when the constants are not

specified. Obviously, in practice, these constants are important and benchmark

computations may characterize them well for particular classes of problems.

Oo far we have addressed only the case of quasi-uniform mash. If the

mesh is properly refined then we have the following:

THEOREM 3.3. Let the load acting on the plate be uniform on F and the mesh

decomposition p~'operly selected. Then there exist constant CI such that the

following estimate holds:

3.6 IUo - UFEIE CIN-/IT'

with n = 4 for ARGY, ii = 1 for HCTR and HYBR. Further for any mesh

C2N-Y"• IuO - UFEIE where C2 > 0 depends-only on skewnees of the elements..

0

Theorem 3.3 shows that the performance of ARGY is especially good when

proper design of the mesh is made. We will show that this choice will permit

the achievement of a higher accuracy.

Theorem s 3.1, 3.2 and 3.3 follow from the standard mathematical theory

of finite elements (see e.g. [19], [27]).

So far we have discussed only the performance with respect to the energy

norm measure of the error. Analogous behaviour is expected for other norms of

the accuracy. We will partially address questions of this type in the

following section.
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4. THE BENCHMARK PROBLEM COIMUTATION

In this section we compare the performance of the finite elements

described in Section 3. We will analyze energy and displacement errors with

respect to the numbers of degrees of freedom and the cost of computational

work. Quite often in the literature only the relation between error and

degrees of freedom is shown. Although this is a very important characteriza-

tion, the most important information is the relation between accuracy and

computational cost. The latter depends, of course, on different factors

(programming technique, solver algorithm, etc.) which make it not completely

well defined while the first characterization has a completely precise

meaning. Neverbheless, using standard level of programming and suitable

description of the machine cost very reliable informations can be obtained.

4.1. THE UNIFORM MESH DECOMPOSITION

We first consider the case of uniform mesh. In Fig. 4.1 an example of

such a mesh is shown.

We have solved the skew plate problem for four different values of the

skew angle a: 800, 600, 400, 300.

Xa

Fig. 14.1. A uniform mesh with triangular elements.
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The physical data of the plate are the following:

side length 1.0 in

Young's modulus 3. x 107 lb/in2

Poi3son's ratio 0.3

thickness 0.1 in

load 1. lb/in2

First we show the relation between the energy norm of the error and the

number of degrees of freedom. Let EEX denote the exact energy of the

plate, EFE the energy of the finite element solution. The relative energy

norm lelER of the error e = u0 - UFE can be expressed (using basic

properties of the finite element solution) in the following way

.1 l leE E1xEFE 2

.eIER = ' E EXo100.EEX

Figures 4.2a-d show the results for different values of a when a mesh of the

type shown in Fig. 4.1 is used. In each figure results for ARGY, HCTR and

HYBR elements are given. Both the scales are of logarithmi• type. In all the

cases the ARGY element give better performances. This is expected when the

singularity is still weak (i.e. a = 800), but it happens for each value of

a which supplies the information about the constants CI and C2 (see

Theorem 3.2). Within each test the order of convergence is nearly the same

Oi
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EU Y IM E1ROR v.. O.S.F. ENERGY NORM ERROR yeO.O.F.

0 G- -0.- AROT A

CICTR

o-o--o HY6R

a d evo o ... v..! " / d.e.... .o i ..edo

t"= OSoSFI 6

ENERGY N ORM R ROR .O.F. ENEP, NORM-ERROR v- O.O.F.

600

0.14285 40Il-I

c -U'R c -M'

AJ'•A~~M = N.• 30

Fig.4.2a-d. Energy norm of the error against number of degrees of freedom for
uniform mesh. The slope of the triangle denotes, in each figure, the theoret-
ical rate of convergence.

A.
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for the three different methods. In the figures the theoretical order is

shown. As the error is (see 3.5) of order

4.2 N -a

the slope of the lines is expected to be close to the value -Y2 a . A quite

IT-a

good agreement between theoretical and computational order of convergence can

be seen. We note, as expecteu, the rapid increasing of the error when a

becomes smaller. In particular in Fig. 4.2a,b,c the same scales have been

used to emphasize the deterioration of the accuracy while a assumes the

values 80, 60, 40. Due to the magnitude of the error a different scale is

used in Fig. 4.2d (a = 300).

Let us now consider the displacement of the plate. Let uMO(O) denote

the value at the center of the plate computed by Morley ([28), [29)) using

series expansion, UFE(C) the finite element solution. The relative

displacement error is simply defined as

= uMO(C) - UFE(C) 100.

Figures 4.3a-d give the error D% against number of degrees of freedom. The

behaviour of the displacement error is roughly the same as the error in the

ener-gy avm This is not surprising due to the relation linking energy and

displacement (i.e. the error in the energy is the average error in

•Q ~di spl acemen t).

Let us now explain the reason of the deterioration of accuracy as a

becomes smaller. Obviously when a decreases the skewness of the elements

increases and, at the same time, the results worsen. Thi* fact sometimes
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O[DSPLACEMET ERROR ru. O.O.F. OISPLACEMENT ERROR we. O.O.F.

2-tAm--4 ARGY

c - • HCIRO---'---O IIYOR

88

r 0 .8 0.5

I. _ _ _ _ __,,_.. . . ._ _._0_.. ... _ _. . . ..

ice 1o' to t0,

KIMe: = FtPLFtH = 60

DISPLACEMENT BM O.O.F. DISPLACEMENT ERROR .. O.F.V.

---- 4 ARGY 4-+--4 ARGY
0--•--.- 1-"T o-e.--- HFTm

o.---O--- IYOR o.--.--9- HYMR

10O'o . . ."0O' •' " . . . • t. . . Oto'... 0

a of fr.o*&^ a dgree of freodeP-Mr~ = 40 FU.HR = MQ

Fig. 4.3a-d. Relative displacement error at the center of the plate against
number of degrees of freedom for uniform mesh. The slope of the triangle
denotes, in each figure, the theoretical rate of convergence.

I
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seems to lead to the conclusion (see [26]) that the effect of the skewness of

the elements is the reason of worsening. The major factor is the change of

the smoothness of the exact solution in dependance of a and not the skewness

of the elements. To illustrate this fact let us compute the error when meshes

of type shown in Fig. 4.4 b and d (in Fig. 4.4 a and c the usual meshes are

shown). Of course., the skewness of meshes 4.4 b and d is larger than the one

of 4.4 a and c, respectively. Figures 4.5a-d compare the measure in the

energy norm of the error for both normal and 'skewed' meshes. The continuous

lines refer to the normal mesh, the dashed lines to the 'skewed' mesh.

Figures 4.6a-d show analogous results for the displacement error.

.-Fig. 4.4a-d. Examples of mesh used to evaluate the sensitiveness of the
numerical solution to the skewness of the elements of the decomposition.
Left: 'natural' mesh; right: 'skewed' mesh.

i-n'
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We see that the singularity of the solution and not the skewness of the

elements is the main reason for the change of performance of the method. Only

a relatively slight contribution is given by the 'skewed' mesh negligible

compared with the influence of the singularity.

Remark 4.1. Of course the form of the triangle, more precisely its maximal

angle (see [30]) has essential influence on convergence (i.e. when it is

violated convergence does not occur at all). Nevertheless, in our case the

maximal angle of any triangle is far enough fro:m 7 and thus its effect is

negligible compared with the smoothness effect.

4.2. The non-uniform mesh decomposition

The presence of singular behaviour at the obtuse corners of the plate

makes the moments unbounded. The rate of.convergence (see 4.2) is so small

that uniform mesh gives completely unacceptable results. In example, for

a = 300, extrapolating the error behaviour shown in Fig. 4.3d, we see that a

number of degrees of freedom N > 106(,,) is needed to achieve a 5% accuracy

for the displacement at the center of the plate. If we properly refine mesh

then Theorem 3.3 applies and much better results can be achieved, especially

for the ARGY element. The optimal meshes need to be graded in the place where

singular solution occurs. Figures 4.7a-d show a sequences of refined meshes

used in the computation. Figures 4,8a-d show the error in the energy norm

against the number of degrees of freedom for angles a = 800, 600, 400, 300.

The performance of the ARGY element with the non-uniform meshes of Fig. 4.7 is

reported, together with the results related to uniform meshes. Also the slope

related to the theoretical order given in Theorem 3.3 is shown in the figures.

The improvement of the accuracy is really effective, especially when a

becomes smaller.
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Fig.4.7a-d. A sequence of non-uniform decompositions with refinement around the

obtuse comers.
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The mesh shown in Fig. 4.7 are geometric meshes with a factor Y2. This

type of decomposition is effective as far as the major contribution to the

error appears in the smallest element, due to the singularity of the solution.

If the singularity is not strong enough such a geometric mesh is not effective

because the major error comes out of the larger internal element. This

behavior can be seen in Fig. 4. 8 a (a = 800, weak singularity). However,

after a certain number of successive refinements analogous situation will

occur for the other angles as well. When this phase is reached simultaneous

refinement around the singularity location and outside should be made.

Figures 4.9a-d show the error in the displacement at the center of the

plate. Again, the slope of the theoretical convergence rate (that is twice

the order of the energy norm) is indicated.

We see that the ARGY element, which is of higher degree, performs very

well in the case of non-uniform mesh. This is among others due to the fact

that higher order finite elements are able to better "absorb" the singulari-

ties of the solution, as shown in [32], [33] in relation to the p-version of

the finite element method.

It is necessary to note that ARGY element is overconstrained (i.e. the

second derivatives at the vertices are used). This can sometimes lead to

difficulties (not present in the problem we are dealing with). For exampie,

when the plate change thickness the second derivatives of the solution are not

continuous while the overconstraining enforces continuity. Nevertheless, a

simple adaptation of the elements, using the fact that the character of the

discontinuity is known, can avoid the difficulty. Another well known cases,

are those when boundary condition changes from clamped type to nonclamped and

in corners of clamped boundary (which can be delt with by a proper refinement
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of the mesh). Hence the results of the discuased benchmark is representation

for simply supported polygonal plates.

4.3. Accuracy and computational work

The comparison accuracy - number of degrees of freedom is the most used

in the scientific literature. However, given a problem to solve within a

certain range of precision, the most important relation is between accuracy

and cost of computation. This should be, and indeed it is in practical

environment, the criterium upon which to rest the selection of the most suit-

able finite element. Only recently this problem has been approached fron a

quite general standpoint (see [34)). Hereafter we will give only some general

lines of this important question, focusing mainly on the numerical results

obtained with the finite elements previously described. The finite element

computation requires the execution of the following steps:

a - topology, mesh generation

b - local stiffness matrices

c - assembly and solution

d - postprocessing (i.e. computation of required data).

Sometimes assembly is combined with computation of local stiffness matrices.

The cost of the mesh generation and the cost of postprocessing are not too

much sensitive to the elements. On the other hand, parts b and c depend

heavily on the type of finite element. Toward a simple approach we will only

consider the cost of parts b and a. As regards the accuracy, we have already

seen that different measures can be used (e.g. energy norm, L. norm, etc.).

We will espec:ally consider the energy norm although pointwise accuracy could

be examined as well. The conclusion we will base on the energy norm will

essentially hold for pointwise accuracy.
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Computer time depends on both hardware (operative system, compiler,

etc.) and software (programmation technique, etc.). Nevertheless, it is

reasonable to assume that the state of the art programming will lead to

acceptable and objective conclusions. Of course, some very special techniques

could influence the conclusions but this has to be considered as a "different"

method (as it is the case for parallel computer oriented methods, which are

not optimal for sequential machines and could give better performances).

The results presented throughout the paper has been obtained using an

Apollo 410 computer. The programs are performed in a standard way and are

included in the finite element library MODULEF (see 135]). The final linear

system is solved via elimination method based on the Choleski factorization.

In Fig. 4.10a,b the time for the computation of local stiffness

matrices, resp. for assembly and solution, against the number of degrees of

freedom is shown. As expected, in both the figures the time spent is larger

for ARGY than HCTR and HYBR element, depending mainly on the dimension of the

elementary stiffness matrix.

As previously said we are interested in accuracy versus cost and this is

the subject of Fig. 4.11a-d where the cost is represented as total time for

computation of local stiffness matrices, assembly and solution while the error

in tne energy norm is chosen for the accuracy.

Analogous result hold for the displacement error at the center of the

plate. We compared the performance of the elements ARGY, HCTR and HYBR on a

uniform mesh. In addition, we have also shown the performance of the ARGY

element for refined mesh. (Such a mesh needs more work to generate.) The

proper mesh refinement has larger effects on the performance of the higher

degree element than the lower degree, hence, for the refined mesh the

comparison will be-still more favorable for ARGY.
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Fig. 4.10a,b. Time for computation of local stiffness matrices against number
of degrees of freedom (a). Time for assembly atd solution against number of
degrees of freedom (B) (HCTR and HYBR connect).

Remark 4.1. We analyzed the performance of the finite element method to solve

the plate problem according to the mathematical model based upon the Kirchhoff

theory. Of course, the question about the validity of such a model is essen-

tial. We can formulate the plate problem as a 3-dimensional elasticity pro-

blem and give it (exact) solution the meaning of true solution. Then we can

compare this value with the (exact) solution of the Kirchhoff (2-dimensional)

model.

It is well known that as the thickness t * 0 the 3-dimensional

solution converges to the 2-dimensional one (see, e.g. [36), [37), £38),

[40), [41)). The accuracy of the Kirchhoff solution depends very much on both

thickness t and skew angle a.
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Denote by u, v, w the 3D displacement of the plate and let us model the

simple support by constraining w = 0 at the sides boundary surface while

leaving u and v unconstrained. Let E3 D be the exact (strain) energy of

the 3D formulation, EK the Kirchhoff one. Then the quantity

4.4 EE = 3D - EK/2
E3D

is very close to the relative error of the Kirchhoff solution in the energy

norm (like in relation 4.1). In fact, for v = 0, * is the exact relative

error measured in the energy norm.

Since the uniform load is 1 1, we have:

45 E.D f w3D dx.1 dx 2 ,

4.6 EK = J wK dxI dx 2 ,

n
4.7 E3D - EK =f (W3D-WK)dXl dx2,

where w3D, wK denote the vertical displacement in the 3D and Kirchhoff

model, resp. Hence, ED - (EE) 2 is the relative average error in the dis-

placement at the loaded surface.

Table 4.1 shows the value EE, ED for t = .0.01 and various values

a. The values E3 D have been computed out of the results obtained using the

code STRIPE (with p-version capability), developed by the Computational

Mechanics Center of the Aeronautical Research Institute of Sweden (see [39]),

on the CRAY X-47/48 of the Pittsburgh Supercomputing Center (PSC). A careful

extrapolation technique, based on the results for different values of p and

meshes, has been applied. The values EK have been computed with analogous
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extrapolation technique, based on the results for different values of p and

meshes, has been applied. The values EK have been computed with analogous

procedures out of the numerical results described in the subsections 4.1-4.3.

TABLE 4.1

SKEW ANGLE ERRI ERR2

80 11.65 1.36

60 17.89 3.20

40 ...71 113-7

S.. 30- 38.17 14.57

ERRI: % ERROR IN THE ENERGY NORM

ERR2: % AVERAGE DISPLACEMENT ERROR

thickness = 0.01
Poisson's ratio = 0.3

We see that the Kirchhoff model gives unacceptable results except for

plates either close to the square shape or with very small thickness. In a

forthcoming paper we will address in details the reliability of various plate

models of Reissner-Mindlin type and discuss the accuracy of their finite

element approximation.

I•
SM
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5. CONCLUSIONS

Let us summarize the conclusions which can be drawn from the benchmark

computation of the uniformly loaded simply supported skew plate with Kirchhoff

formulation.

1. The major reason of the error dependance on the skewness of the

plate is the singularity of the solution and not the skewness of the element

of the decomposition. Hence this benchmark problem is not well suited for

comparing different elements except for the case when the performance in

presence of strong singularity of the solution needs to be evaluated.

2. The problem characterizes well any polygonal simply supported plate

subject to analytic load. The solution in the neighborhood of a critical

vertex with internal angle a (see Fig. 5.1) has, for any 8 such that-1

is not integer, the following expression:

__ irK 22+ -f •K 1- 7K 2
u = C r 8 sin--8 + C2 r 8 sin i-K2  + smoother terms

with K1I, K2  integers and since u E H2 (•) we have to have 2 + > 1
irK2

and > 1. Hence the major singularity term is:

7F

u = Cr8 sin!0 for 0 < 8 r

2-_

u = Cr sin e for n < < 2w.

For example, the L-shaped domain with 8 = w i should be compared with a skew

plate with skewness angle a = 450.
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Fig. 5.1. A reentrant corner in a L-shaped domain.

Therefore, with proper correspondence the benchmark problem can be applied

quite generally.

3. The higher order elements provide better accuracy (in the engineer-

ing range) than the lower ones for the same computational cost, both in pres-

ence of singularity and for smooth solution, either for uniform or properly

designed meshes. By accuracy we mean the error in the energy norm or point-

wise error. The computer cost takes into account computation of local stiff-

ness matrices, assembling procedure and (direct) solving time. The relation

between accuracy and cost are in agreement with the theoretical model

introduced in [34].

4. Because anisotropic plates, after proper coordinates transformation,

has the same (or very similar) properties of isotropic ones, the conclusions

hold also for this case. Of course, the notion of the angle is now not only

geometrical but depends also on the anisotropy. For example, the finite ele-

. ....
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ment of an anisotropic square plate behaves then as the solution of an

isotropic skew plate.

5. Accuracy of the Kirchhoff model compared with 3 dimensional linear

elasticity solution could not be acceptable for larger skewness of the plate.

U
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